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Abstract 

The individual rings in benzenoid systems are studied via a new structural index, 
called Clar's ring character. The new index, which is based on selected Kekul6 
valence structures, differs significantly in a number of cases from similar ring 
characterizations based on all Kekul~ valence structures. It is related to previously 
introduced quantities based on MO functions, but it can be obtained simply (i.e. 
without the need of a computer). We have illustrated the new ring index for several 
families of compounds, and report a number of regularities for a homologous 
series of molecules. 

1. Introduction 

Conjugated benzenoid hydrocarbons (such as those depicted in fig. 1) have 
traditionally been described by a set of Kekul~ valence structures, which have also 
been widely used in early quantum chemical contributions [1]. With the revival of 
interest in chemical graph theory [2], Kekul6 valence structures received fresh atten- 
tion, which resulted in numerous  novel observat ions and results. For  example ,  i t  was 

recognized tha t  the individual Kekuld valence s tructures  can themselves be decomposed  

into various (4n + 2)-size conjugated circuits [4] ,  which then led to  expressions for  

molecular  resonance energy.  Also, more  recent ly it was found tha t  Kekul6 valence 

s t ructures  vary in their  short-  and long-range order characteristics,  which can be 
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Fig. 1. Molecular graphs of some benzenoid hydrocarbons. 

related to an innate degree of freedom of Kekul~ valence structures [5]. Kekul~ 
valence structures which support a long-range order (such as the selected structures 
in fig. 2) can immediately be recognized by chemists as those structures that have 
little, if any, importance for descriptions and discussions of the aromaticity of com- 
pounds. On the other hand, the Kekul~ valence structures shown in fig. 3 can be 
recognized intuitively, or by using chemical logic and experience, as important. In 
fact, even before the early days of quantum chemistry, Fries [6] formulated an 
empirical rule describing the most important Kekul~ valence structures. He recognized 
that those Kekul~ valence structures that contain the largest number of formal Kekul~ 
rings (i.e. rings with three double and three single bonds) are the most important. 
Hence, not all Kekul~ valence structures have the same importance, but the difficult 
problem has been that of establishing which valence structures are important and 
which are not. Clar, the doyen of the chemistry ofbenzenoid hydrocarbons, accumu- 
lated impressive experience on the synthesis and properties of benzenoids [7,8] and 
was able, in a qualitative way, to resolve the problem of the relative importance of the 
individual Kekuld valence structures by an ingenious approach: by construction of 
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f= l  f= l  f= l  

f : l  f=2  f=2 

f : 5  f = 5  f = 2  

f = 2  

Fig. 2. Examples of Kekuld valence-bond structures that support a long-range 
order, i.e. have low innate degree of freedom values (f's). Such structures have 
a small contribution to the stability of the benzenoid system. 

novel structural formulae for these compounds. These, now called Clar's structural 
formulae or Clar structures [9],  are illustrated for a number of  benzenoid systems in 
fig. 4. Immediately we see three kinds of  cases: (a) Valence structures with all rings 
either having a circle, signifying a pi-electron sextet, such as in benzene itself, or 
being "empty" ,  i.e. without any pi-sextet character or any CC double bonds; 
(b) Valence structures with some rings having sextet, while other rings have CC double 
bonds; and finally (c) Molecules for which no unique Clar structure is possible. It is 
easy to see that Clar's circle can be obtained as a result of  a superposition of  a pair of  
Kekuld valence structures. Consider the case of  pyrene, all possible combinations of  
pairs of  structures of  which are illustrated in fig. 5. By a superposition of  two Kekuld 
valence structures, one can identify a single conjugated circuit. Thus, we find in 
pyrene the conjugated circuits listed in table 1. 
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Fig. 3. Examples of important Kekul~ structures. 

(c) 

(b) (a) 

(o) 

(b) 

Fig. 4. Illustration of Clar structures (Clar struc- 
tural formulae) of some benzenoid hydrocarbons. 

(b) 



A B C D E F 

A+B A+C A+D A+E A+F B+C 

B+D B+E B+F C+D C+E C+F 

D+E D+F E+F 

Fig. 5. Kekuld and Clar structures of  pyrene. Structure A + B is 
obtained by superposition of  structures A and B and so on. 

285 

The expression for the molecular resonance energy (RE) is obtained by count- 
ing conjugated circuits of different size and dividing by K, the number of  Kekul~ 
structures. Hence: 

RE (pyrene) = 2(6R1 + 4R2 + 3R3)/6. 

The factor of two enters because we consider only half of the possible pairs due to 
symmetry, i.e. superposition (A, B), for example, gives the same result as superposition 
(B, A) and so on. The contribution of disjoint conjugated rings, here R1-R  i,  are 
neglected in numerical treatments due to their negligible role. Let us now restrict 
attention only to structures having R 1 conjugated circuits, some of which are shown 
below: 

C+D A+C D+F A+E A+D+ 
B+C 
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Table 1 

Conjugated circuits of pyrene 

Number of Size of Contributing 
pi-electrons circuits structures Total 

6 R~ A + B ,  6 
A +C, 
A + E ,  
B + D ,  
C + D ,  
D + F  

10 R 2 B +E 4 
B + F  
C + E  
C + F  

14 R 3 A + F 3 
D + E  
E + F  

6.6 R~ "R 1 A +D 2 
(disjoint) B + C 

Fig. 6. Examples of  Kekul~ valence structures that are neglected 
by Clar formalism. All such structures are of  minor importance. 
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These have been called Clar-type valence structures or Clar patterns [9]. Only the last 
structure is that of Clar, i.e. only the last is the structure by which Clar proposed to 
represent pyrene. Clar considered to have for a polycyclic conjugated hydrocarbon a 
single structural formula, and in the case of pyrene the formula is the one designated 
as: A + B + C + D. Hence, the new valence structure neglects two Kekul~ structures of 
pyrene (the structures E and F of fig. 5). Observe that this is tantamount to neglecting 
numerous larger conjugated circuits (R2, R3, •. • ). However, if one focuses attention 
on the dominant factors involved in aromaticity, then one can see that Clar's intuitive 
approach can be justified because larger conjugated circuits (R2, R 3 , . .  • ) make 
smaller and smaller contributions to the overall molecular thermodynamic stability. 
In fig. 6 we illustrate the Kekul~ valence structures which are neglected by Clar's 
approach for selected benzenoid systems. The purpose of fig. 6 is to show that indeed 
these particular structures are of less importance (cf. fig. 2) judged by chemical 
intuition. 

2. Quan t i t a t ive  approach to Clar 's sex te t  m o d e l  

The approach of Clar amounts to neglect of some Kekuld valence structures, 
but as Herndon and Hosoya [10] have recently demonstrated, one can base a quantita- 
tive description of conjugated systems on very few Clar-type structures. According to 
Hemdon and Hosoya, in the case of pyrene it suffices to use only the following 
structures: (A + E), (D + F) and (A + B + C + D): 

These are the only Clar-type structures that have a unique location for CC double 
bonds, once a sextet circle is indicated. Observe also that by "broadening" the bases 
of Clar, i.e. by including the structures (D, F) and (A, E), Herndon and Hosoya [10] 
have recovered structural information contained by Kekul6 valence structures E, f that 
was neglected by the single Clar structure description of  the system. In the approach 
of  Herndon and Hosoya, we find the valence structures A and D (of fig. 5), which each 
contribute 3R1 + R3 to pyrene's molecular RE, to have twice the weight of the other 
structures. Interestingly enough, the same two structures are precisely those that 
Fries' empirical rule [6] suggests as the most important. Alternatively, one sees that 
the same two structures make the largest relative contributions to the molecular RE 
in the conjugated circuit approach of Randid [4] and its valence bond counterpart: the 
resonance structure model by Herndon [11 ]. 

All the above strongly suggests that Clar structural formulae and Clar-type 
valence structures contain important structural information and can form a basis for 
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a quantitative model of  chemical stability of  large benzenoid systems. We will there- 
fore briefly review selected results concerning Clar structures. 

3. Clar g raphs  

Gutman [ 12] considered the resonance relations among the individual hexagons 
of a benzenoid hydrocarbon. Two rings are said to be resonant or resonance-related 
if simultaneously both rings can have a sextet assignment (i.e. there is a Clar-type 
formula with both rings having inscribed circles)• In Clar's formulae, such rings are 
disjoint. If we (arbitrarily) label the rings in pyrene as follows: 

then three Clar-type resonant structures are possible. They are the structures A + E, 
D + F and A + B + C + D shown before as the structures that uniquely determine the 
positions for all CC double bonds once Clar sextets are assigned. From the definition 
of  the Clar graph, one can construct a Clar matrix cq thus: 

1 if  rings i, j are nonresonant 

cij = 0 otherwise. 
(1) 

Observe that here adjacency means that rings are nonresonant and in Clar's 
qualitative description, such (adjacent) rings were associated with pi-sextet "migra- 
tion" [8]. Hence, for pyrene we obtain the following Clar matrix: 

a b c d 

C = 

a(Oll 
b 1 0 1 

c 1 1 0 

d 0 1 1 0 

According to Gutman, the Clar graph of  pyrene is then the graph whose adjacency 
matrix is _C, i.e. 

(] 

d 
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x 2 

2x + x 2 

0 

x 2 
x + 2 x  2 

~ . . ~  X 2 
A 

W ~ w 

Fig. 7. Clar graphs of pyrene and ofbenz[a] anthracene. The 
colorings represent maximal independent sets of vertices. 
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Observe that in this particular example, the derived graph is the so-called "inner 
dual" [13] of the molecular graph of pyrene, although this is not generally true as 
can be seen, e.g. by considering benz [a] anthracene: 

a bc d 

b o 1 
C 1 0 

d 0 I 0 

B C 

b 

a c d 

C 

There is a bijective mapping between the r/ngs (hexagons) of a benzenoid hydrocarbon 
and the vertices of the corresponding Clar graph, such that the two vertices ui, o/of  C 
are adjacent only if the corresponding rings in B are nonresonant. Given the Clar 
graph, one can construct the Clar-type base structures by following the rules for 
"coloring" vertices as follows: 

(1) No two colored vertices are adjacent. 
(2) Every non-colored vertex is adjacent to at least one colored vertex. 

The above rules define the so-called "maximal independent sets of vertices" 
for a graph and appears in other graph-theoretical studies [14]. In fig. 7, we show the 
colorings for the selected two Clar graphs discussed previously. For each Clar graph 
shown, we illustrate the corresponding unique Clar structure. 

4. Clar p o l y n o m i a l s  

Polynomials provide simple bookkeeping for combinatorial enumerations and 
as such have already been used by Wheland [15] in connection with the enumeration 
of valence structures of conjugated benzenoids. Wheland polynomials enumerate 
valence structures of different degrees of excitation for a set of canonical valence 
structures. The elegance and advantages of the polynomial approach have already been 
demonstrated in Wheland's pioneering work. This includes the use of recursions and 
graph-theoretical reduction of large systems to smaller ones. However, the particular 
Wheland approach, although of no consequence for his interest, has a disadvantage: 
By restricting attention to canonical valence structures only (as determined by Rumer's 
non-crossing rule [16]), the derived polynomials are not structural invariants. The 
form of the polynomial depends on the assumed labeling of the vertices, as illustrated 
amply by Randid et al. [ 17]. In graph-theoretical considerations, graph invariants play 
a more important role than quantities that are not invariant. Recently, it has been 
shown that if one does not restrict the count of structures of different degrees of 
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8 Structures 

6 Structures 

5 Structures x 2  

TOTAL 
58 Structures 

(5 Structures) x 2 

(2 Structures) x 2 

(2 Structures) x 2 

(2 Structures) x 2 

(3 Structures) x 2 

(1 S t ruc tures)  x ] 

TOTAL 
22 Structures 

( l  St ructures)x 2 ( l  Structures) x 2 

TOTAL 
4 Structures 

Fig. 8. Clar-sextet structures of fulminene. Only 
non-symmetry-related structures are shown. 

excitation to canonical structures only, but considers all valence structures, the 
counting polynomial known as the generalized Wheland polynomial [17] becomes 
a structural invariant. With respect to Clar structures, similarly one would like to 
consider various invariants. The counting polynomial for Clar structures, called the 
sextet polynomial, was introduced by Hosoya and Yamaguchi [18] and is structurally 
invariant. The polynomial considers all Clar-like structures and counts resonance rings. 
By definition, the coefficient corresponding to k = 0 is 1, and the coefficients of  its 
power, x ~, indicate k resonant rings. Hence, the sextet polynomial of  pyrene is 
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1 + 4x + x 2 . Analogously for a polynomial, the coefficients of  its powers x t¢ indicate 
the number of  Clar-type resonant structures with k inscribed circles [19] and will 
be reflected in a CL(x) Clar polynomial. The Clar polynomial thus counts sets of  
maximally independent k vertices of the associated Clar graph. Thus we have: 

CR (pyrene; x)  = 2x + x 2 (2) 

CR (benz[a] anthracene; x) = x + 2x 2 . (3) 

The Clar resonant count, i.e. the number of  Clar-type structures for a given 
benzenoid hydrocarbon, is considerably smaller than the Oar-sextet-structure count 
or the corresponding Kekul~ count. For example, for fulminene (fig. 8) there are 
twenty-one Kekul6 valence structures (as can be easily verified by following the 
elegant scheme by Gordon and Davison [20] for the count of  Kekul6 structures for 
catacondensed benzenoids). The number of  Clar-sextet structures is sixty-four (as 
shown in fig. 8, where only symmetry-unrelated cases are illustrated), but only five 
of  these sixty-four are Clar resonant structures. These are the last five structures, 
four having three inscribed sextet circles and one having only two pi-sextets. The 
structures can also be recognized as unique, being the only structures in fig. 8 in which 
all CC bonds have been assigned. The uniqueness of  the five structures is seen also by 
the labels "1 -structure" written underneath. 

In table 2, we have listed Clar and sextet polynomials for a number of  smaller 
benzenoid systems. In fig. 9, we illustrate recursive relations for the Clar polynomial 
of  a number of  benzenoid families shown in fig. 10. Let us use the symbol Ln for the 
Clar polynomial of  a linearly fused chain of n-hexagons (polyacenes). If now we have 
a structure in which some "end" groups are attached to one side of  the linear chain, 
as illustrated: 

we can obtain the corresponding Clar-resonant polynomial by successively assigning 
resonant pi-sextets to all possible sites. As an illustration, we consider benzpyrene: 
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xL 2 

xL~ 

x 

Among the structures on the left-hand side, the last structure is complete and qualifies 
as Oar-resonant because all other bonds have a unique bond-type assigned. Thus, the 
last structure makes a contribution to the polynomial with power x. The other two 
structures (to the left) are not  complete, but  when combined with the linear fragment 
produce the additional Clar resonant structures (shown on the right-hand side). Because 
linear chains already have one pi-sextet, we in this way obtain the coefficients of  the 
x 2 term of the sought Clar polynomial. In more general graphs, expressions for the 
polynomial will depend on the chain length. We can summarize the result by writing 
the contributions as a product  of  x (in the general case x k) and Ln, where Ln repre- 
sents the characteristic polynomial arising from a linear chain of  length n. Hence: 

CR (benzopyrene;x)  = xL2 + x L l  + x, 

and in view of  LI = x and L2 = 2x,  etc., we finally obtain CR(benzopyrene; x) = x 
+ 3x 2 . Thus, there are four Clar structures of  benzopyrene which correspond to the 
four "colored" Clar graphs shown below: 

3 x  2 x 
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Table 2 

Clar and sextet polynomials of  some families of benzenoid hydrocarbons. The number of Clar 
structures is CR(G; 1), while that for the weighted structures is CR(G, 2). 

Class Clar polynomial Sextet polynomial 

CR(G; x) o (G; x) 
(n :2) x + n x  2 1 +(n + 2 ) x  + nx  2 
(n :3)  x + 2 n x  2 1 +(n + 3 ) x  +2nx 2 

(n :4) x + 3 n x  2 1 +(n + 4 ) x + 3 n x  2 
( 2 : n : 2 )  2 x  2 + n x  3 l + ( 4 + n ) x + ( 2 n + 3 ) x  2 +nx  3 

( 1 : 2  :n) (2n + 1)x 2 1 +(n + 3)x +(2n + l ) x  2 
( 2 : 2 : n )  2 x  2 + 3 n x  2 l + ( n + 4 ) x + 2 x  2 + 3 n x  2 

( 2 : ( 1 ) : n )  x + n x  3 l + ( n +  3 ) x + ( 2 n + l ) x  2 +nx  3 
(3 : (2) :n) x + 4 n x  3 1 +(n + 5)x +4(n + l ) x  2 + 4 n x  3 

(2 5 :n) x +(2n + l ) x  2 1 +(n + 4)x +(2n + l ) x  2 
(2 3 :n )  x + 3 ( n  + l ) x  2 l + ( n + 6 ) x + 3 ( n  + l ) x  2 
(2 4 :n) x +(4n +6)x  2 1 +(n + 7)x +(4n +6)x  2 
( 2 : n : 2  5) 3x 2 + ( 2 n + l ) x  3 l + ( n + 6 ) x + ( 3 n + 7 ) x  2 + ( 2 n + l ) x  3 
( 2 : n : 2 3 )  4x 2 + 3 ( n + l ) x  3 l + ( n + 7 ) x + ( 4 n + l l ) x  2 + 3 ( n + l ) x  3 
(22 :n :22) 4x 2 +4(n + 1)x 3 1 +(n + 8)x +(4n +14)x 2 +4(n + 1)x 3 
( 2 2 : n : 2 3 )  5x 2 + ( 6 n + 9 ) x  3 l + ( n + 1 0 ) x + ( 5 n + 2 2 ) x  2 + ( 6 n + 9 ) x  3 

Benzopyrene  can be cons idered  as the  first m e m b e r  o f  the  family  

for  wh ich  one can immed ia t e ly  cons t ruc t  the co r re spond ing  expressions for  the 

individual  m e m b e r s :  

C R I ( x )  = x ( L 2  + L ~  + 1) (4)  

C R 2 ( x )  = x ( L a  + L z  + 1) 

C R 3 ( x )  = x ( L 4  + L 3  + 1) 

(s) 

(6) 

C R n ( x  ) = x ( L n +  1 + L n + 1). (7)  

It  can be s h o w n  tha t  L n = n x ,  Thus ,  b y  subs t i tu t ing  x = 1 in C R n ( x  ) we ob ta in  the 

Cla r - resonant  c o u n t  2n  + 2. In  table 2 ,  we present  similar i n f o r m a t i o n  fo r  the  o the r  

families o f  graphs dep ic ted  in fig. 11. 



v 

v 

¢.... 

¢..- 

& 
t~ 

"2 

v 

t"" 

A 

7 

".Z." 

.2. 

v 

295 

6 , . . <  
t t ~  

, . ~  ,Xl 

O 

1,0 

t'M 

E 
0 

I1  

t '~  
+ X 

rO  

t'M 
¢-.  

.° 

t'M 

t ~  

E 
O 

I.t_ 

t'M 
,.:2 

+ 

t"" 

X 

T 

t'M 
r - -  

v 

X 

T 

A 

re) 

x 

T 0 

b,t 

" ~ a z  

~°~ 



296 S. El-Basil and M. Randi6, Clar pi-electron sextets 

(22:n) 

(23:n) 

(24 :n) 

( 2: n: 22) 

(2: n: 23) 

(22:n:22) 

[ • . . , •  (22:n:23)  

Fig. i 1, Families of  peri-condensed benzenoid hydro- 
carbons studied in this paper (cf. tables 2 and 5). 
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5. Local characteristics of  benzeno id  systems 

The simplest local features in polyatomic molecules, diregarding atoms, are 
bonds. For conjugated hydrocarbons (benzenoid hydrocarbons in particular), even 
in the early days of quantum chemistry, Pauling [1] and Coulson [21] suggested, 
using Valence-Bond and Molecular Orbital methods, respectively, how to derive 
useful bond descriptors, known as Pauling and Coulson Bond Orders. A dozen years 
later, Ruedenberg and Ham [22] found an intriguing relationship between the two 
quantities: suitably weighted orbital contributions in HMO for a bond (i, j )  give the 
valence bond order of Pauling. Other local parameters (including purely atomic 
descriptions) have since been considered. These include atomic free valencies [23], 
para-localization energies [24] and consideration of special bonds or atoms, such as 
the K and L regions in the work of Pullman [25]. More recent experimental work [26] 
pointed, however, to a larger molecular fragment, the so-called bay region, as being 
responsible for the pro-carcinogenic potential of benzenoid hydrocarbons. The bay 
region is illustrated here for benz [a] anthracene. 

Computer programs are available for the construction and count of Kekuld structures, 
conjugated circuits and bay regions in large polycyclic structures [27]. Other mole- 
cular fragments may also be of interest. Recently, for example, a larger section called 
a fjord was involved in a discussion of shapes and retention times of benzenoid hydro- 
carbons [28]. In quantitative approaches to structure-activity relations and drug 
design and in pharmaceutical and medicinal chemistry, for some time it has been 
recognized that larger molecular fragments are important for inducing particular 
biological effects. Empirically, workers have established the "morphine" rule [29] 
and other similar rules which stipulate which molecular fragment is essential for the 
biological, therapeutic and toxic responses of such compounds. Recently, a graph- 
theoretical approach has been suggested [30] for the search for active fragments, and 
in the case of a dozen nitrosamines it was found that the 7-atom fragment: 

C 

C C C 

is the basis for the pronounced mutagenicity of these compounds. 
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6. Ring  indices  

From the previous section, it seems natural to consider individual rings in 
polycyclic conjugated hydrocarbons and try to differentiate between them. Stimula- 
tion for such studies again came from Clar [8], who in several of his publications was 
able to show how ~ring aromatic character" is reflected in the magnitude of spin-spin 
couplings in the NMR of attached hydrogens. Polansky and Derflinger [31], using 
the results of molecular orbital (MO) calculations, were able to assign an MO-ring value 
to individual rings of polycyclic hydrocarbons. Hence, MO results allow one to discuss 
the relative role (i.e. weights) of individual rings in polycyclic structures. In somewhat 
related work, Graovac et al. [32], using available MO results, assigned an index to 
individual Kekul~ valence structures, the so-called Kekul6 index. This index deter- 
mines the relative weights of the individual Kekul~ valence bond structures as reflected 
in MO calculations. Subsequently, Randi6 [3] restricted considerations of the Kekul6 
index to individual rings, thus arriving at an alternative ring characterization which 
differs from the one of the scheme in ref. [30]. All these approaches can generally be 
viewed as quantum chemical schemes in the sense that refined calculations could be 
used when available and individual ring index values are to be revised. However, 
because they apply equally to HMO (and most of the results are of HMO origin), they 
can be viewed as graph-theoretical because the adjacency matrix and the Hiickel 
matrix (which in tum is based on Bloch's approximation of nearest-neighbor inter- 
action [34] ) are mathematically equivalent [35]. 

The question is: Can we have a less convoluted graph-theoretical characteriza- 
tion of the local ring features of polycyclic conjugated hydrocarbons? Can we arrive 
at simple ring indices that result from some graph-theoretical enumeration, rather 
than being a result of solving an eigenvalue problem? 

These questions were first addressed by Randi~ [36], who proposed a ring 
index as the count of the number of Keku16 structures in which the selected ring 
appears formally as a benzene ring, i.e. it has three single and three double bonds 
alternating. In fig. 12, this is illustrated on benz[a] anthracene having seven Kekul6 
structures. We see that rings A and B are in four Kekul6 structures, represented by R 1 : 
the smallest conjugated circuit (which is equivalent to being represented by a Kekul~ 
valence structure of benzene). The central ring appears only twice as a benzene ring, 
while the '~exposed" terminal ring D appears in six out of seven, being represented 
as benzene, and hence its ring index is 6/7. In order to derive the ring values for 
larger molecules, one does not need to construct all the Keku18 valence structures. 
As illustrated in fig. 13, one selects the ring of interest, into which Clar's sextet is 
inscribed, and then completes assignment of all bonds possible. If for all bonds the 
CC bond type has been assigned, the ring index value is 2/K, K being the number of 
Kekul6 structures for the system, and 2 arising from the fact that Clar's sextet (benzene 
ring) has two Keku16 structures. This is, for example, the case for the central ring in 
benz [a] anthracene or phenanthrene: 
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Fig. 12. The seven Kekul~ structures o f  benz[a]anthracene .  Rings A and B are 
represented by R I (a conjugated circuit containing 6 pi-electrons) in four  of  the 
structures. The " k i n k "  ring appears only twice as a benzene ring, while ring D 
appears in six out  o f  the seven structures as R 1. 

R = 2/7 R = 2/5 

If, however, after completing the assignment of CC bond types some molecular frag- 
ment remains unassigned, the ring index is given by the ratio R = 2Kt/K, where K'  is 
the number of Kekuld structures for the fragment for which CC bond types are un- 
decided. Hence, the ring value of 6/7 for one of the terminal rings in benz [a] anthracene: 

K ' = 3 ,  K = 7  

R = 2 " 3 / 7  = 6/7 
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Fig. 13. Pictorial illustration of tile topological environments of several selected 
families of rings in peri-condensed systems. The shaded parts represent hydro- 
carbons already studied here (figs. 10, 11 and tables 2, 5). 
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Here, we have shaded the as yet unassigned portion of the structure for better 
visibility of the presently incomplete assignment. Additional examples are shown in 
fig. 13. Hosoya and coworkers [19, 37] have investigated this particular ring index, 
which they write as: 

K(BOR i) 
R(i) = K(B) ' (8) 

where B denotes the benzenoid systems, R(i ) the selected ring, and BOR i is part of 
the molecular graph obtained after ring R i and all connected CC bonds have been 
deleted. 

7. Nove l  r ing index  

The ring index R(i ) can be called the Kekul~ ring index because it is based on 
the totality of Kekul~ valence structures. We use the symbol KR(i) in order to dis- 
tinguish it from other ring indices. We also wish to define an analogous index, to be 
called the Clar ring index, which will be obtained in a similar way but by considering 
only Clar-resonance structures. Formally, we may write: 

2CK(BO R i) 
CR(i) - (9) 

CK(B) 

The factor of 2 arises because it takes two Kekul~ structures to generate a Clar circle. 
Here, C/~ (B) represents the number of Kekul~ valence structures involved in the super- 
position process which leads to Clar-resonant structures, and similarly CI¢(BORi) 
indicates the part of the molecular graph which is obtained after ring R i has been 
deleted. Let us again consider pyrene, in which there are only three Clar structures, 

Weighf 

v~., 

2 2 4 Sum=8 

Consider rings A and B separately and each time erase the ring in question, together 
with all edges incident with it. We obtain: 
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~~ and 

respectively. For CKR A we then have 2/8 and for CKR B we have 4/8, the denominator 
is C K(B), which is eight, because it takes eight Kekulg valence structures to obtain 
the three Clar structures. 

A Clar structure that contains k-disjoint pi-sextets is based on 2 ~ Kekulg 
valence structures, two structures for each pi-sextet. In table 3, we report Clar's 
ring values for numerous smaller benzenoid structures. The proper weighting of the 
individual contributing BOR i graphs is essential if one is to obtain correct discrimina- 
tion among chemically very different rings. Consider benz[a] anthracene and let us 
ignore the proper relative weights of  the three Clar structures (which are 2, 4 and 4, 
respectively): 

Then one obtains for all the three linearly fused rings the same index of 1/3, as each 
appears once in the three structures, while the last ring has an index of 2/3 as it occurs 
in two of the three Clar structures. We thus obtain the pattern: 

Such characterization is deficient, as we know that the last linearly fused ring is 
different. However, with relative weights of  2 : 4 : 4 we obtain the following: 

Now, the central ring at the "kink" site is found to have a much lower ring values, 
and thus much less local similarity to benzene. Meanwhile, the similarity of  the 
adjacent terminal ring has increased from 2/3 to 8/10, in agreement with experience. 
The revised values also better parallel the results based on Kekul~ structures, viz., 
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Table 3 

Clar and Kekul~ ring indices of  some benzenoid systems. Numbers inside rings 
are Clar indices [eq. (9)] ,  while those outside are Kekul~ indices [eq. (8)] .  

2/3 2/4 2/4 4/5 g/5 

~ 7  ~ . ~  6/8 

2/5 2/5 4./7 4/7 2/7 ~ J 4 / 8  

6/8   J9 2/9 

2/6 2/6 2/6 

~ ~ 8 / 9  

4/9 4/9 4/9 2/9 

~ /12 

10/13 8/13 

6111 8/li 

6/11 6/11 4/11 

6/10 6/10 2/10 

2/13 

t3 
8/13 8/13 Lv,J 

~ 12/I4 

14 
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The parallelism of CR/and KRi (i.e. ring indices based on Clar and Kekul~ structures, 
respectively) is illustrated in table 4 for several families of catacondensed benzenoids, 
for which all relevent data can also be found in table 5 together with data on several 
additional systems shown previously in figs. 10 and 11. From table 4, we see a smooth 
monotonic relationship between the two quantities. This relationship is of considerable 
practical importance because the computation of CRi is very simple even for relatively 
large systems, while KRi involves consideration of all Kekul~ valence structures which, 
even in the case of modest-size compounds having a dozen benzene rings, may 
approach a thousand. In some instances, the powerful technique based on transfer 
matrices [38] can spped up the analysis, but in the case of structures of little sym- 
metry, we have no simple way to by-pass tedious analysis. Clar resonant structures 
are much fewer in number and can be easily analyzed. Because of the noted parallelism, 
the choice between the different ring indices becomes the choice of convenience and 
here CR/ has an obvious advantage. In fig. 13, we show the topological dependency 
of ring environment for several ring types of pericondensed systems. 

8. Conc lud ing  remarks  

It appears that Clar's qualitative approach, advanced well over a quarter of a 
century ago, has been deliberately overlooked by most quantum chemists for too 
long. At best, it was viewed in some circles as controversial. It is unfortunate that, 
while the excellence of Clar's experimental work was not questioned, his speculations 
apparently had to wait for recognition. The revived interest in chemical graph theory 
combined with a "novel view on old things" by Polansky and Derringer together 
resulted in a full appreciation of Clar's outstanding pioneering results, at least in the 
chemical graph theory community. The theoretical origin of sextets can be traced to 
Armitt and Robinson's [39] pre-quantum chemistry era. Hemdon's work on the 
resonance structure model [11,40] provided important stimuli and justification for 
models considering only sets of Kekul~ valence structures. 

The conjugated circuits [4] approach, simplified and helped one to visualize 
the underlying computational structure. Finally, more recently, Herndon and Hosoya 
[ 10] further reduced the basis of valence structures to what appears to be a minimum: 
the set of Clar-resonant structures. ~ivkovid [41] introduced highly accurate quantum- 
chemical computations on benzenoid systems by broadening the concept of valence 
structural incorporate valence orbitals that can be associated with the set of valence 
structures. In order to fully digest these theoretical capabilities, which can generate 
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Table 4 

Clar characters CR(t) [eq. (9)],  and Kekuld ring indices R(i) [eq. (8)],  
of some families of  benzenoid hydrocarbons. 

Family n CR(i) R(i) 

(n : 2) 1 2/3 4/5 
2 2/5 4/7 
3 2/7 4/9 
4 2/9 4/11 

(2 : n : 2) 1 1/2 1/3 
2 1/3 1/4 
3 1/4 1/5 

( 2 : 2  :n) 1 3/8 3/11 
2 3/14 3/15 
3 3/20 3/19 
4 3/26 3/23 

Table 5 

Expressions for the number of Kekul~ structures K, number of Clar structures C, and 
the number of  weighted Clar structures CK, of families of benzenoid hydrocarbons 

Family K C C K 

(n :2)  2n +3 n +1 4n +2 
(n !3) 3n +4 2n + 1 8n +2 
(n :4)  4n +5 3n + 1 12n +2 
(2 :n :2)  4n +8 n +2 8n +8 
( l : 2 : n )  3 n + 5  2 n + l  8 n + 4  
( 2 : 2  :n)  4n +7 3n +2 12n +8 
(2 : (1) :n)  4n +5 n + 1 8n +2 
(3 : (2) :n)  9n + 10 4n + 1 32n +2 
(22 :n)  3n +6 2n +2 8n +6 
(23 :n)  4n +10 3n +4 12n +14 
(24 :n)  5n +15 4n +7 16n +26 
(2 :n :22 ) 6n +15 2n +4 16n +20 
(2 :n : 23 ) 8n +24 3n +7 24n +40 
(22 :n :22 ) 9n +27 4n +8 32n +48 
(22 :n  :23 ) 1 2 n + 4 2  6n +14 48n +92 
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selected results of SCF-MO quality, we may need additional graph invariants. In this 
paper, we advocate use of  CR i, Clar resonant ring indices, as potentially useful 
descriptors for the local atomatic characteristics of benzenoid systems, not necessarily 
to replace currently used descriptors [42], but to supplement them and thus extend 
the applications to systems which are too large for analysis without such assistance. 
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